# **Environmental Activities: Supplementary Data**

# **1** Climate Change Mitigation and Adaptation

## **Reducing Greenhouse Gas Emissions**

■ Greenhouse Gas Emissions (All Seven Gases) (Sumitomo Chemical: All Worksites)

(Thousand tons of CO2e)

|                            |                            | FY2015      | FY2016      | FY2017      | FY2018      | FY2019       | FY2020      | FY2021       | FY2022 | FY2023 |
|----------------------------|----------------------------|-------------|-------------|-------------|-------------|--------------|-------------|--------------|--------|--------|
| CO <sub>2</sub>            | Energy sources             | 2,559       | 2,405       | 2,454       | 2,543       | 2,722        | 2,645       | 2,549        | 2,537  | 2,322  |
|                            | From other than energy use | 55          | 50          | 93          | 155         | 142          | 157         | 146          | 137    | 217    |
| Methane (CH4)              |                            | —           | —           | _           | <del></del> | <del>-</del> | <del></del> | _            | _      | _      |
| Nitrous oxide (N2O)        |                            | 65          | 45          | 35          | 23          | 15           | 20          | 22           | 22     | 16     |
| Hydrofluorocarbon (HFC)    |                            | <del></del> | <del></del> | <del></del> | <del></del> | 4            | 4           | <del>-</del> | _      | —      |
| Perfluorocarbon (PFC)      |                            | <del></del> | <del></del> | <del></del> | <del></del> | <del></del>  | <del></del> | _            | _      | _      |
| Sulfur hexafluoride (SF6)  |                            | <del></del> | <del></del> | <u>—</u>    | <del></del> | <del></del>  | <del></del> | _            | _      | —      |
| Nitrogen trifluoride (NF3) |                            | _           | _           | _           | _           | _            | _           | _            | _      | _      |

Note: Calculated based on the Act on the Rational Use of Energy and the Act on Promotion of Global Warming Countermeasures.

## **Energy Saving**

#### FY2023 Breakdown of Unit Energy Consumption (Sumitomo Chemical)

|              | Energy consumption (1,000 kl in crude oil equivalent) (a) | Production (1,000 tons in ethylene equivalent) (b) | Unit energy consumption (a/b) |
|--------------|-----------------------------------------------------------|----------------------------------------------------|-------------------------------|
| Ehime Works  | 412                                                       | 594                                                | 0.693                         |
| Chiba Works  | 368                                                       | 301                                                | 1.223                         |
| Osaka Works  | 22                                                        | 14                                                 | 1.556                         |
| Oita Works*  | 54                                                        | 39                                                 | 1.406                         |
| Misawa Works | 11                                                        | 10                                                 | 1.160                         |
| Ohe Works    | 24                                                        | 132                                                | 0.186                         |
| Total        | 891                                                       | 1,089                                              | 0.819                         |

Notes: • Calculated based on the Act on the Rational Use of Energy and the Act on Promotion of Global Warming Countermeasures.

#### ■ FY2023 Energy Consumption and CO<sub>2</sub> Emissions (Sumitomo Chemical and Group Companies in Japan: All Worksites)

|                                                                              | Energy consumption (1,000 kl in crude oil equivalent) | CO2 emissions from energy use (1,000 tons) |
|------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|
| Sumitomo Chemical                                                            | 909                                                   | 2,322                                      |
| Works                                                                        | 897                                                   | 2,298                                      |
| Non-manufacturing sites including the Head Offices and Research Laboratories | 12                                                    | 24                                         |
| Sumitomo Chemical and Group companies in Japan                               | 1,437                                                 | 3,661                                      |
| Works                                                                        | 1,408                                                 | 3,607                                      |
| Non-manufacturing sites including the Head Offices and Research Laboratories | 29                                                    | 54                                         |

Notes: • Calculated based on the Act on the Rational Use of Energy and the Act on Promotion of Global Warming Countermeasures.

<sup>•</sup> Ibaraki Works, which was added from fiscal 2022, is excluded.

Moreover, the Works' energy consumption, total floor area, and unit energy consumption were 5 thousand kl (crude oil equivalent), 17 thousand m², and 0.301, respectively.

<sup>\*</sup> Data for the Oita Works includes data for the Gifu and Okayama plants.

<sup>•</sup> The boundary of calculation covers major consolidated Group companies, accounting for 99.8% of Sumitomo Chemical's consolidated net sales.

## **2** Contribute to Recycling Resources, Sustainable Use of Natural Capital

#### **Environmental Performance**

Sumitomo Chemical collates and totals environmental data for the Company and Group companies in Japan and overseas, including data on energy and resource consumption, production quantities, and environmental impact (e.g., release of pollutants into the air and water).

#### ■ FY2021–2023 Environmental Performance (Sumitomo Chemical and Group Companies in Japan)

#### **INPUT** Energy and Resources



(Million tons)

|                  | FY2021 | FY2022 | FY2023 |
|------------------|--------|--------|--------|
| Industrial water | 70.5   | 69.5   | 68.7   |
| Drinking water   | 0.9    | 0.8    | 0.8    |
| Seawater         | 862    | 763    | 606.6  |
| Groundwater      | 25.5   | 26.3   | 22.2   |
| Other water      | 2.7    | 2.5    | 2.3    |
| Total            | 962    | 863    | 701    |

(Thousand kl)





Resources

|                               | FY2021 | FY2022 | FY2023 |
|-------------------------------|--------|--------|--------|
| Fuel, heat, and electricity*1 | 1,801  | 1,634  | 1,437  |

(Thousand tons)

|                                   | FY2021 | FY2022 | FY2023 |
|-----------------------------------|--------|--------|--------|
| Hydrocarbon compounds             | 1,713  | 1,684  | 1,451  |
| Metals (excluding minor metals)*2 | 115    | 104    | 85     |
| Minor metals*3                    | 17.4   | 16.2   | 15     |

#### PCB/CFCs under Secure Storage

|                                                                    | FY2021 | FY2022 | FY2023 |
|--------------------------------------------------------------------|--------|--------|--------|
| No. of electrical devices containing high concentrations of PCBs*4 | 0      | 0      | 0      |
| PCB volume (pure equivalent) (kl)*4                                | 0      | 0      | 0      |
| No. of refrigeration units using specified CFCs as a coolant       | 27     | 20     | 24     |
| No. of refrigeration units using HCFCs as a coolant                | 286    | 277    | 214    |

Note: The number of companies included in the boundary of calculation for the environmental performance data on page 3 is as follows for each year.

FY2021: Sumitomo Chemical and Group companies in Japan: 23 companies

FY2022: Sumitomo Chemical and Group companies in Japan: 22 companies

FY2023: Sumitomo Chemical and Group companies in Japan: 23 companies

- \*1 From fiscal 2017, the energy (calculated as kl of crude oil) indices were calculated based on the GHG Protocol (refer to "Calculation\_ Standards for Environmental and Social Data Indicators").
- \*2 Calculations include the following 12 metals: iron, gold, silver, copper, zinc, aluminum, lead, platinum, titanium, palladium, gallium, and lithium.
- \*3 Calculations include the following seven minor metals: nickel, chromium, tungsten, cobalt, molybdenum, manganese, and vanadium. The supply structure for each of these minor metals is extremely fragile. These minor metals are subject to national stockpiling.
- \*4 Fluorescent lamps and mercury lamp ballast as well as contaminated substances (wastepaper, etc.), including PCB waste, are not included in unit and volume data.

#### **OUTPUT** Product Manufacturing and Environmental Impact



|                                                    |        | `      | ,      |
|----------------------------------------------------|--------|--------|--------|
|                                                    | FY2021 | FY2022 | FY2023 |
| (Calculated on the basis of ethylene production)*1 | 2,613  | 2,413  | 1,963  |

(Tons)

(Thousand tons)



|               |                          | FY2021 | FY2022 | FY2023 |
|---------------|--------------------------|--------|--------|--------|
| COD           | Coastal waters/waterways | 960    | 825    | 641    |
| COD           | Sewer systems            | 207    | 175    | 137    |
| Phosphorus    | Coastal waters/waterways | 36.1   | 32.0   | 24.9   |
|               | Sewer systems            | 5.9    | 6.1    | 5.0    |
| Nitrogon      | Coastal waters/waterways | 1,303  | 1,236  | 1,057  |
| Nitrogen      | Sewer systems            | 68.6   | 47.8   | 27.2   |
| Substances su | ubject to the PRTR Act   | 11.1   | 13.3   | 13.6   |

(Million tons)



|                                 | FY2021 | FY2022 | FY2023 |
|---------------------------------|--------|--------|--------|
| Total amount of water discharge | 920    | 809    | 658    |

Note: Includes seawater emissions of Sumitomo Joint Electric Power Co., Ltd.

(Thousand tons)



|                               | FY2021 | FY2022 | FY2023 |
|-------------------------------|--------|--------|--------|
| Outsourced waste processing*2 | 276    | 232    | 157    |
| Landfill*2                    | 30.7   | 21.9   | 14.9   |
| (Breakdown)                   |        |        |        |
| On-site landfill              | 0      | 0      | 0      |
| External landfill             | 30.7   | 21.9   | 14.9   |

(Thousand tons of CO2e)



|                                          | (************************************** |        |        |  |  |
|------------------------------------------|-----------------------------------------|--------|--------|--|--|
|                                          | FY2021                                  | FY2022 | FY2023 |  |  |
| Greenhouse gases (seven gases)*3         | 6,241                                   | 5,418  | 4,119  |  |  |
| Emissions from energy use (CO2)          | 5,435                                   | 4,639  | 3,661  |  |  |
| CO2 emissions from other than energy use | 655                                     | 633    | 382    |  |  |
| CH4                                      | 6                                       | 6      | _      |  |  |
| N2O                                      | 143                                     | 137    | 75     |  |  |
| HFC                                      | 2                                       | 3      | 1      |  |  |
| PFC                                      | _                                       | _      |        |  |  |
| SF6                                      | _                                       | _      | _      |  |  |
| NF3                                      |                                         |        |        |  |  |

(Tons)

#### Others

|                                      | FY2021 | FY2022 | FY2023 |
|--------------------------------------|--------|--------|--------|
| NOx                                  | 3,901  | 3,783  | 2,597  |
| SOx                                  | 3,896  | 3,098  | 1,958  |
| Soot and dust                        | 173    | 167    | 127    |
| Substances subject to the PRTR Act*4 | 420    | 404    | 635    |

Note: The number of companies included in the boundary of calculation for the environmental performance data on page 4 is as follows for each year.

FY2021: Sumitomo Chemical and Group companies in Japan: 23 companies

FY2022: Sumitomo Chemical and Group companies in Japan: 22 companies

FY2023: Sumitomo Chemical and Group companies in Japan: 23 companies

- \*1 Certain assumptions were made in calculations due to the difficulty of obtaining weight-based figures for some products.
- \*2 The amount of coal ash generated at Sumitomo Joint Electric Power, which is included in "Waste emissions" and "Landfill" (Sumitomo Chemical and Group companies in Japan) is calculated on a dry-weight basis.
- \*3 From fiscal 2017, the energy (calculated as kl of crude oil) indices were calculated based on the GHG Protocol (refer to "<u>Calculation Standards for Environmental and Social Data Indicators</u>"), and include major domestic consolidated group companies accounting for 99.8% of sales.
- \*4 Calculated based on the amount released into water/the air of each substance subject to the PRTR Act.

#### ■ Compliance with Environmental Laws and Regulations

(Yen)

|             | FY2021 | FY2022 | FY2023 |
|-------------|--------|--------|--------|
| Total fines | 0      | 0      | 0      |

Note: Sumitomo Chemical and our 22 Group companies in Japan, making a total of 23 companies, are included in the boundary of calculation [The production sites of the 22 Group companies in the boundary are listed below]

Sumika-Kakoushi Co., Ltd.; Sumika Color Co., Ltd.; Sumika Plastech Co., Ltd.; Nippon A&L Inc.; Asahi Chemical Co., Ltd.; Ceratec Co., Ltd.; Sumika Assembly Techno Co., Ltd.; SanTerra Co., Ltd.; Sumika Agro Manufacturing Co., Ltd.; SC Environmental Science Co., Ltd.; Sumika Agrotech Co., Ltd.; Sumika Polycarbonate Ltd.; Nihon Medi-Physics Co., Ltd.; Sumitomo Joint Electric Power Co., Ltd.; Koei Chemical Co., Ltd.; Taoka Chemical Co., Ltd.; Tanaka Chemical Corporation; Sumitomo Pharma Co., Ltd.; SN Kasei Co., Ltd.; Sanritz Corporation; Sumika High-Purity Gas Co., Ltd.; and Sumika Kowa Tech Co., Ltd.

#### **Evaluation of Environmental Protection Costs and Economic Effects through Environmental Accounting**

Sumitomo Chemical continuously gathers and evaluates data on environmental protection-related expenses, investments, and economic results in line with the Company's environmental accounting system introduced in fiscal 2000.

#### ◆ Items Pertaining to Environmental Accounting

- (1) Period: April 1, 2023 to March 31, 2024 for Group companies in Japan; January 1, 2023 to December 31, 2023 for overseas Group companies
- (2) Boundary: Sumitomo Chemical and 21 major consolidated subsidiaries (16 in Japan and 5 overseas)\*; 22 companies in total
- (3) Composition (Classification): Based on Ministry of the Environment (Japan) guidelines
- (4) Outline of the results (investment and expenses): Consolidated investment decreased year on year by 4.6 billion yen, and consolidated expenses increased by 0.1 billion yen.

#### ■ Environmental Protection Cost

(Billion yen)

|           |                                          |                                                                                                                                                                                                                                                                          |            | FY2       | 022        |          |            | FY2       | 2023       |          |
|-----------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|------------|----------|------------|-----------|------------|----------|
|           | Classification                           | Details of Major Initiatives                                                                                                                                                                                                                                             | Non-Con    | solidated | Consol     | lidated  | Non-Con:   | solidated | Consol     | idated   |
|           |                                          |                                                                                                                                                                                                                                                                          | Investment | Expenses  | Investment | Expenses | Investment | Expenses  | Investment | Expenses |
| Faci      | ity Area Costs                           |                                                                                                                                                                                                                                                                          | 4.2        | 23.8      | 7.3        | 36.8     | 1.4        | 23.7      | 2.9        | 36.8     |
| Br        | Pollution Prevention Costs               | Prevention of air pollution, water pollution, soil contamination, noise pollution, odors, ground subsidence, etc. (pages 7–8)                                                                                                                                            | (1.0)      | (17.8)    | (3.4)      | (23.1)   | 1.1        | 17.9      | 1.9        | 23.7     |
| Breakdowr | Global Environmental<br>Protection Costs | Energy saving, prevention of global warming, ozone layer depletion, and other measures (pages 2, 10)                                                                                                                                                                     | (0)        | (0.3)     | (0.4)      | (4.3)    | 0          | 0.2       | 0.5        | 3.8      |
| ň         | Resource Recycling Costs                 | Resource saving, water saving and rainwater usage, waste reduction/disposal treatment, recycling, etc. (refer to "Contribute to Recycling Resources" on pages 4-5 and the Supplementary Data on pages 14-18)                                                             | (3.2)      | (5.8)     | (3.5)      | (9.5)    | 0.3        | 5.6       | 0.4        | 9.3      |
| Ups       | ream/Downstream Costs                    | Green purchasing, recycling, recovery, remanufacturing and appropriate treatment of products, recycling costs associated with containers and packaging, environmentally friendly products and services, etc.                                                             | 0          | 0.1       | 0          | 0.4      | 0          | 0.1       | 0          | 0.3      |
| Adn       | inistrative Costs                        | Costs associated with environmental education, environmental management systems, the monitoring and measuring of the environmental impact of business activities and products, environmental organization operations, etc. (pages 21-22)                                 | 0          | 0.9       | 0          | 1.5      | 0          | 0.8       | 0          | 1.5      |
| R&D       | Costs                                    | Development of products with attention to environmental safety, research into energy-saving processes, etc.                                                                                                                                                              | 0.1        | 9.5       | 0.1        | 9.7      | 0          | 9.9       | 0          | 10.0     |
| Soci      | al Activities Costs                      | Protection of the natural environment and enhancement of its scenic beauty and greenery, support for community initiatives aimed at environmental protection, support for environmental preservation groups, environment-related paid contributions and surcharges, etc. | 0          | 0.4       | 0          | 0.9      | 0          | 0.4       | 0          | 0.7      |
| Envi      | ronmental Remediation Costs              | Environmental rehabilitation of contaminated environments and other environmental damage, reserve funds to cover environmental recovery, etc.                                                                                                                            | 0          | 0         | 0          | 0        | 0          | 0         | 0          | 0        |
| Tota      |                                          |                                                                                                                                                                                                                                                                          | 4.3        | 34.7      | 7.5        | 49.3     | 1.4        | 34.9      | 2.9        | 49.4     |

<sup>\*</sup> Sumitomo Pharma Co., Ltd.; Koei Chemical Co., Ltd.; Taoka Chemical Co., Ltd.; Sumika Agrotech Co., Ltd.; Sumika Color Co., Ltd.; Sumika Color Co., Ltd.; Nihon Medi-Physics Co., Ltd.; Nihon Medi-Physics Co., Ltd.; Sumika-Kakoushi Co., Ltd.; Sumika Agrotech Co., Ltd.; Ceratec Co., Ltd.; Sc. Environmental Science Co., Ltd.; Sn Kasei Co., Ltd.; Sumika Agro Manufacturing Co., Ltd.; Sumika Plastech C

#### ■ Economic Effects

(Billion yen)

| Results                                    | FY2              | 022          | FY2023           |              |  |
|--------------------------------------------|------------------|--------------|------------------|--------------|--|
| nesuits                                    | Non-Consolidated | Consolidated | Non-Consolidated | Consolidated |  |
| Reduced costs through energy saving        | 0.1              | 0.2          | 1.2              | 1.5          |  |
| Reduced costs through resource saving      | 0.4              | 0.7          | 0.4              | 1.9          |  |
| Reduced costs through recycling activities | 4.0              | 4.5          | 5.0              | 6.4          |  |
| Total                                      | 4.5              | 5.5          | 6.5              | 9.8          |  |

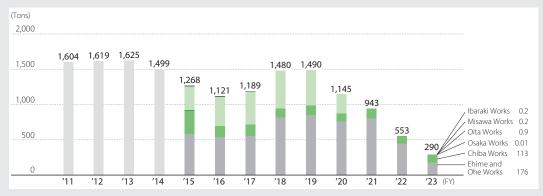
#### ■ Cost Efficiency of Environmental Protection Measures (Sumitomo Chemical: All Worksites)



Note: After performing more detailed calculations, the figure for the cost efficiency of environmental protection measures in fiscal 2022 was revised from 92.3 to 69.5.

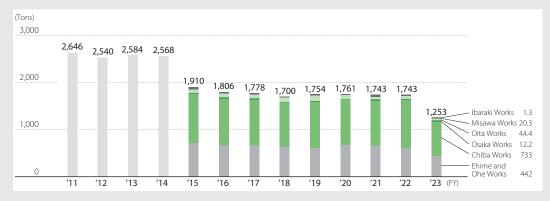
In fiscal 2005, we began implementing measures to improve the cost efficiency of our environmental protection measures by making sure that all activities were as cost effective as possible. We will implement more effective measures by analyzing and studying the breakdown of our environmental protection costs and reviewing each item to determine its importance. We calculate the cost efficiency of our environmental protection as the ratio of annual total production value to total environmental protection costs, in order to better reflect actual production activities in the calculation.

# Preventing Pollution: Atmospheric Emissions of SOx, NOx, Soot, and Dust

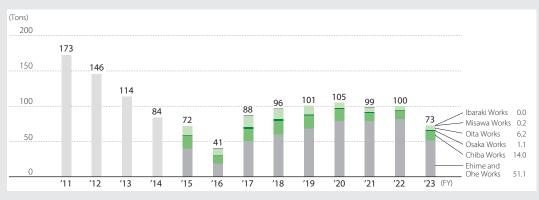

In 1970, Sumitomo Chemical achieved a marked reduction in the release of SOx, NOx, soot, and dust into the atmosphere, and continued to maintain low levels of emissions from 1980 to the present. Furthermore, the Company has concluded cooperative agreements with local municipal governments at each of its Works, establishing voluntary control levels that are stricter than the standards given under applicable laws and regulations.

Note: Data for the Gifu Plant and Okayama Plant from fiscal 2004 to fiscal 2012 is included in Osaka Works. Data for the Gifu Plant and Okayama Plant from fiscal 2013 is included in Oita Works.

**Target** 


Continue to sustain levels below voluntary control standard values.

#### SOx Emissions (Sumitomo Chemical)




# ■ Ibaraki Works ■ Misawa Works ■ Oita Works ■ Osaka Works ■ Chiba Works ■ Ehime and Ohe Works

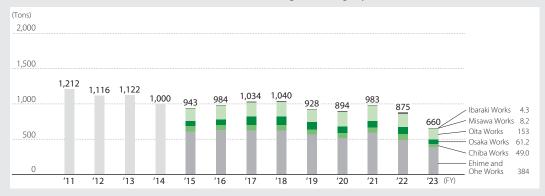
#### NOx Emissions (Sumitomo Chemical)



#### ■ Soot and Dust Emissions (Sumitomo Chemical)

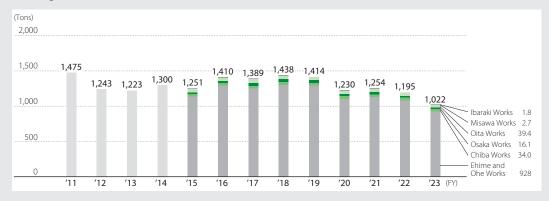


# Water Emissions of COD, Nitrogen, and Phosphorus

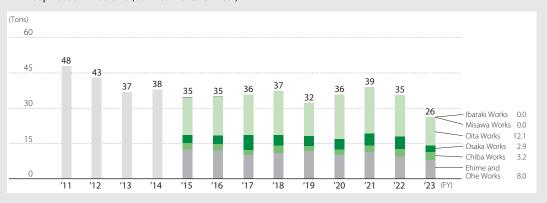

A number of measures have been implemented to cut emissions, in line with fifth-generation Water Quality Standards, and emissions of COD, nitrogen, and phosphorus into waterways have been significantly reduced since fiscal 2004. Sumitomo Chemical has also concluded cooperative agreements with local municipal governments to establish voluntary control levels for COD, nitrogen, and phosphorus released into waterways at each Works. These standards are also stricter than those established under applicable laws and regulations.


Note: Data for the Gifu Plant and Okayama Plant from fiscal 2004 to fiscal 2012 is included in Osaka Works. Data for the Gifu Plant and Okayama Plant from fiscal 2013 is included in Oita Works.

**Target** 


Continue to sustain levels below voluntary control standard values.

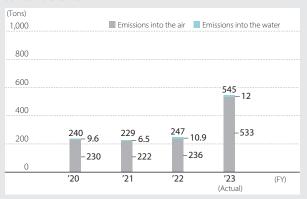
#### COD Emissions (water emissions include water discharge to sewage systems) (Sumitomo Chemical)



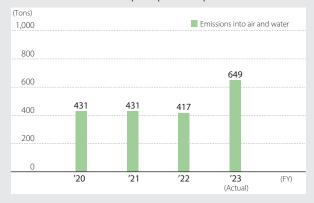



#### ■ Nitrogen Emissions (Sumitomo Chemical)




#### ■ Phosphorus Emissions (Sumitomo Chemical)




## Addressing PRTR and VOCs

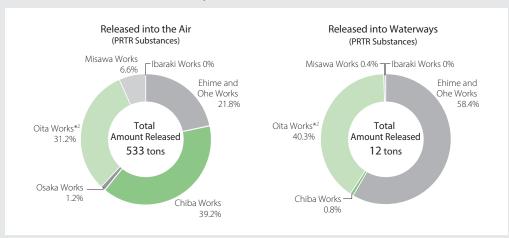
#### ■ Trends in Emissions of Substances Subject to the PRTR Act\*1

#### Sumitomo Chemical



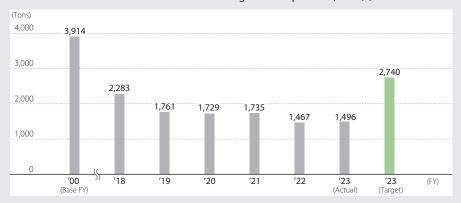
#### Sumitomo Chemical and Group Companies in Japan




<sup>\*1</sup> The number of substances subject to the PRTR Act increased from 354 to 462 in April 1, 2023.

#### ■ FY2023 Release and Transfer of PRTR Substances\*1 (Sumitomo Chemical and Group Companies in Japan)

(Tons)


|                 |                                                | Released |       |          | Transferred |       |          |  |
|-----------------|------------------------------------------------|----------|-------|----------|-------------|-------|----------|--|
|                 |                                                | Air      | Water | Subtotal | Sewage      | Waste | Subtotal |  |
| PRTR substances |                                                |          |       |          |             |       |          |  |
|                 | Sumitomo Chemical (150 substances)             | 533      | 12    | 545      | 4.2         | 4,145 | 4,149    |  |
|                 | Sumitomo Chemical and Group companies in Japan | 635      | 14    | 649      | 6.0         | 6,554 | 6,560    |  |

#### ■ FY2023 PRTR\*¹ Substances Released by Works (Sumitomo Chemical)



<sup>\*2</sup> Data for the Oita Works includes data for the Gifu and Okayama plants.

#### ■ Initiatives to Reduce Emissions of Volatile Organic Compounds (VOCs) (Sumitomo Chemical)



| Target  | Maintain a 30% reduction in VOC emissions compared with fiscal 2000.                                       |
|---------|------------------------------------------------------------------------------------------------------------|
|         |                                                                                                            |
| Results | Reduced emissions by 1,496 tons, or 61.8%, compared with fiscal 2000 by fiscal 2023, achieving the target. |

### **Addressing Fluorocarbons**

■ Calculated Emissions for Fluorocarbons (Sumitomo Chemical: All Worksites)

(tons-CO2e)

|                      | FY2019 | FY2020 | FY2021 | FY2022 | FY2023 |
|----------------------|--------|--------|--------|--------|--------|
| Calculated Emissions | 9,354  | 4,362  | 5,100  | 5,844  | 4,051  |

Number of Refrigeration Units That Use Specified CFCs and HCFCs as Coolants (Sumitomo Chemical and Group Companies in Japan) as of the End of Fiscal 2023

(Number of Units)

|         | Sumitomo Chemical | Sumitomo Chemical and<br>Group Companies in Japan |
|---------|-------------------|---------------------------------------------------|
| CFC11   | 5                 | 5                                                 |
| CFC12   | 10                | 17                                                |
| CFC13   | 0                 | 0                                                 |
| CFC115  | 2                 | 2                                                 |
| HCFC22  | 32                | 190                                               |
| HCFC123 | 16                | 23                                                |
| HCFC124 | 1                 | 1                                                 |

Target

- Eliminate the use of refrigeration units that use specified CFCs as coolants by fiscal 2025.
- Eliminate the use of refrigeration units that use HCFCs as coolants by fiscal 2045.

Protecting the Atmospheric Environment 🗗

## Response to the Pollutant Release and Transfer Register Ordinance (Issued on November 21, 2008)

(Tons, Dioxins: mg-TEQ)

The number of substances subject to the PRTR Act increased from 354 to 462 in April 1, 2023.

(Tons, Dioxins: mg-TEQ)

|     |                                                                                                          |      | Amo   | ount Rele | eased    |       | Amount Transferred |       |       |  |
|-----|----------------------------------------------------------------------------------------------------------|------|-------|-----------|----------|-------|--------------------|-------|-------|--|
| No. | Name of Chemical Compound                                                                                | Air  | Water | Soil      | Landfill | Total | Sewage             | Waste | Total |  |
| 1   | Zinc compounds (water-soluble)                                                                           | 0.0  | 5.6   | 0.0       | 0.0      | 5.6   | 0.0                | 106.4 | 106.4 |  |
| 2   | Acrylic acid and its water-soluble salts                                                                 | <0.1 | 0.0   | 0.0       | 0.0      | <0.1  | 0.0                | 0.0   | 0.0   |  |
| 3   | Methyl acrylate                                                                                          | 0.5  | 0.0   | 0.0       | 0.0      | 0.5   | 0.0                | 0.0   | 0.0   |  |
| 4   | Acrylonitrile                                                                                            | 3.2  | 0.0   | 0.0       | 0.0      | 3.2   | 0.0                | 0.0   | 0.0   |  |
| 5   | Acrolein                                                                                                 | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 6   | Acetaldehyde                                                                                             | 0.1  | <0.1  | 0.0       | 0.0      | 0.1   | 0.0                | 0.0   | 0.0   |  |
| 7   | Aniline                                                                                                  | 0.7  | 0.0   | 0.0       | 0.0      | 0.7   | 0.0                | 46.0  | 46.0  |  |
| 8   | 2-Aminoethanol                                                                                           | <0.1 | 0.1   | 0.0       | 0.0      | 0.1   | 0.0                | 29.0  | 29.0  |  |
| 9   | 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)<br>phenyl]-3-cyano-4-[(trifluoromethyl)sulfinyl]<br>pyrazole | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 10  | allyl alcohol                                                                                            | 0.1  | 0.0   | 0.0       | 0.0      | 0.1   | 0.0                | 0.0   | 0.0   |  |
| 11  | n-alkylbenzenesulfonic acid and its<br>salts(alkyl C=10-14)                                              | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 12  | isoprene                                                                                                 | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 13  | O-ethyl O-(6-nitro-m-tolyl)<br>sec-butylphosphoramidothioate                                             | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 14  | O-ethyl O-4-nitrophenyl phenylphosphonothioate                                                           | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 15  | Ethylbenzene                                                                                             | 2.1  | 0.1   | 0.0       | 0.0      | 2.2   | 0.0                | 21.6  | 21.6  |  |
| 16  | epichlorohydrin                                                                                          | 1.4  | 0.0   | 0.0       | 0.0      | 1.4   | 0.0                | 0.0   | 0.0   |  |
| 17  | 1,2-epoxypropane                                                                                         | 0.0  | <0.1  | 0.0       | 0.0      | <0.1  | 0.0                | 0.0   | 0.0   |  |
| 18  | 1-octanol                                                                                                | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 19  | cadmium and its compounds                                                                                | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 20  | xylene                                                                                                   | 3.5  | 0.0   | 0.0       | 0.0      | 3.6   | 0.0                | 22.1  | 22.1  |  |
| 21  | quinoline                                                                                                | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 22  | cumene                                                                                                   | 2.2  | <0.1  | 0.0       | 0.0      | 2.2   | 0.0                | 0.0   | 0.0   |  |
| 23  | cresol                                                                                                   | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 24  | chromium and chromium(III) compounds                                                                     | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 25  | chromium(VI) compounds                                                                                   | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 26  | chloroethylene                                                                                           | 21.3 | 0.0   | 0.0       | 0.0      | 21.3  | 0.0                | 0.0   | 0.0   |  |
| 27  | chloroacetic acid                                                                                        | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |  |
| 28  | chlorodifluoromethane                                                                                    | 0.2  | 0.0   | 0.0       | 0.0      | 0.2   | 0.0                | 0.0   | 0.0   |  |

|     |                                                                                                                                 |      | Δmc   | ount Rele | hased    |       | Amo    | unt Transfe | arrad |
|-----|---------------------------------------------------------------------------------------------------------------------------------|------|-------|-----------|----------|-------|--------|-------------|-------|
| Vo. | Name of Chemical Compound                                                                                                       | Air  | Water | Soil      | Landfill | Total | Sewage | Waste       | Total |
| 20  | 2 chlore 4.6 his/athylomina) 1.2.5 triazina                                                                                     | 0.0  |       |           |          |       |        |             |       |
|     | 2-chloro-4,6-bis(ethylamino)-1,3,5-triazine                                                                                     |      | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
|     | 3-chloropropene                                                                                                                 | 1.6  | 0.0   | 0.0       | 0.0      | 1.6   | 0.0    | 17.8        | 17.8  |
| 31  | chlorobenzene                                                                                                                   | 6.2  | <0.1  | 0.0       | 0.0      | 6.2   | 0.0    | 114.4       | 114.4 |
| 32  | chloroform                                                                                                                      | 0.4  | 0.0   | 0.0       | 0.0      | 0.4   | 0.0    | 210.2       | 210.2 |
| 33  | 2-ethoxyethyl acetate                                                                                                           | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 34  | vinyl acetate                                                                                                                   | 20.6 | <0.1  | 0.0       | 0.0      | 20.6  | 0.0    | 0.0         | 0.0   |
| 35  | inorganic cyanide compounds (except complex salts and cyanates)                                                                 | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 36  | 2-(diethylamino)ethanol                                                                                                         | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 37  | S-4-chlorobenzyl N,N-diethylthiocarbamate                                                                                       | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 38  | tetrachloromethane                                                                                                              | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 39  | 1,4-dioxane                                                                                                                     | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | <0.1   | 115.7       | 115.7 |
| 40  | Cyclohexane                                                                                                                     | 39.1 | 0.0   | 0.0       | 0.0      | 39.1  | 0.0    | <0.1        | <0.1  |
| 41  | cyclohex-1-ene-1,2-dicarboxi-<br>midomethyl (1RS)-cis-trans-2,2-<br>dimethyl-3-(2-methylprop-1-enyl)<br>cyclopropanecarboxylate | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 42  | cyclohexylamine                                                                                                                 | 0.0  | 0.1   | 0.0       | 0.0      | 0.1   | 0.0    | 3.6         | 3.6   |
| 43  | 1,2-dichloroethane                                                                                                              | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 44  | 1,1-Dichloroethylene                                                                                                            | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 45  | dichlorodifluoromethane                                                                                                         | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 46  | 2,2-dichloro-1,1,1-trifluoroethane                                                                                              | 0.5  | 0.0   | 0.0       | 0.0      | 0.5   | 0.0    | 0.0         | 0.0   |
| 47  | 1,2-dichloropropane                                                                                                             | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 426.0       | 426.0 |
| 48  | 1,3-dichloropropene                                                                                                             | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 49  | dichlorobenzene                                                                                                                 | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 68.8        | 68.8  |
| 50  | dichloromethane                                                                                                                 | 0.1  | 0.0   | 0.0       | 0.0      | 0.1   | 0.0    | 21.6        | 21.6  |
| 51  | N,N-Dicyclohexylamine                                                                                                           | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 52  | dicyclopentadiene                                                                                                               | 0.1  | 0.0   | 0.0       | 0.0      | 0.1   | 0.0    | 8.4         | 8.4   |
| 53  | O,O-dimethyl S-1,2-bis(ethoxycarbonyl)<br>ethyl phosphorodithioate                                                              | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 54  | O,O-dimethyl S-(N-methylcarbamoyl)<br>methyl phosphorodithioate                                                                 | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0         | 0.0   |
| 55  | 2,4-dinitrophenol                                                                                                               | 0.0  | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 39.4        | 39.4  |
| 56  | 2,6-di-tert-butyl-4-cresol                                                                                                      | 0.0  | <0.1  | 0.0       | 0.0      | <0.1  | 0.0    | 0.2         | 0.2   |

(Tons, Dioxins: mg-TEQ)

| No   | Name of Chemical Compound                              |      | Amo   | ount Rele | Amount Transferred |       |        |         |         |
|------|--------------------------------------------------------|------|-------|-----------|--------------------|-------|--------|---------|---------|
| INO. | Name of Chemical Compound                              | Air  | Water | Soil      | Landfill           | Total | Sewage | Waste   | Total   |
| 57   | 1,2-dibromoethane                                      | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 58   | (RS)-O,S-dimethyl acetylphosphoramidothioate           | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 59   | N,N-dimethylacetamide                                  | <0.1 | <0.1  | 0.0       | 0.0                | <0.1  | 0.0    | 10.7    | 10.7    |
| 60   | dimethylamine                                          | 0.0  | 0.1   | 0.0       | 0.0                | 0.1   | 0.0    | 0.0     | 0.0     |
| 61   | N,N-dimethylformamide                                  | <0.1 | <0.1  | 0.0       | 0.0                | 0.0   | 0.0    | 54.7    | 54.7    |
| 62   | mercury and its compounds                              | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 63   | hydrogenated terphenyl                                 | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 64   | styrene                                                | 2.1  | 0.0   | 0.0       | 0.0                | 2.1   | 0.0    | 0.0     | 0.0     |
| 65   | selenium and its compounds                             | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 66   | dioxins                                                | <0.1 | <0.1  | 0.0       | 0.0                | <0.1  | <0.1   | 0.0     | <0.1    |
| 67   | thiourea                                               | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 68   | O,O-dimethyl O-3-methyl-4-nitrophenyl phosphorothioate | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 1.0     | 1.0     |
| 69   | tetrachloroethylene                                    | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 70   | Tetrahydrofuran                                        | 0.6  | <0.1  | 0.0       | 0.0                | 0.7   | 0.0    | 247.3   | 247.3   |
| 71   | tetraethylthiuram disulfide                            | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 72   | terephthalic acid                                      | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 314.7   | 314.7   |
| 73   | copper salts(water-soluble, except complex salts)      | 0.0  | <0.1  | 0.0       | 0.0                | <0.1  | 0.0    | 0.0     | 0.0     |
| 74   | sodium dodecyl sulfate                                 | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 75   | triethylamine                                          | 0.5  | 0.2   | 0.0       | 0.0                | 0.7   | 0.4    | 29.6    | 30.0    |
| 76   | 1,1,1-trichloroethane                                  | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 77   | 1,1,2-trichloroethane                                  | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 78   | trichloroethylene                                      | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 79   | trichlorofluoromethane                                 | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 80   | 1,2,3-trichloropropane                                 | <0.1 | 0.0   | 0.0       | 0.0                | <0.1  | 0.0    | 8.8     | 8.8     |
| 81   | Toluidine                                              | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 2.5     | 2.5     |
| 82   | toluene                                                | 73.5 | 0.2   | 0.0       | 0.0                | 73.7  | 0.3    | 1,568.8 | 1,569.1 |
| 83   | naphthalene                                            | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 84   | nickel                                                 | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 85   | nickel compounds                                       | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 4.2     | 4.2     |
| 86   | nitrobenzene                                           | 0.6  | 0.0   | 0.0       | 0.0                | 0.6   | 0.0    | 46.0    | 46.0    |
| 87   | nitromethane                                           | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |
| 88   | arsenic and its inorganic compounds                    | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.1     | 0.1     |
| 89   | hydrazine                                              | 0.0  | 0.1   | 0.0       | 0.0                | 0.1   | 0.0    | 0.0     | 0.0     |
| 90   | hydroquinone                                           | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.2     | 0.2     |
| 91   | 4-vinyl-1-cyclohexene                                  | 0.0  | 0.0   | 0.0       | 0.0                | 0.0   | 0.0    | 0.0     | 0.0     |

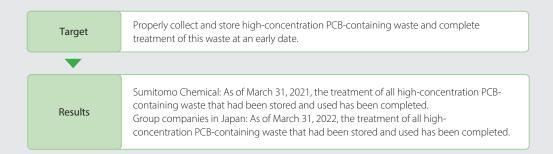
| NIa | Name of Chemical Compound                                                     |      | Amo   | unt Rele | Amount Transferred |       |        |       |       |
|-----|-------------------------------------------------------------------------------|------|-------|----------|--------------------|-------|--------|-------|-------|
| NO. | ivame of Chemical Compound                                                    | Air  | Water | Soil     | Landfill           | Total | Sewage | Waste | Total |
| 92  | biphenyl                                                                      | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 93  | pyridine                                                                      | 0.0  | <0.1  | 0.0      | 0.0                | <0.1  | 0.0    | 6.5   | 6.5   |
| 94  | phenylenediamine                                                              | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 95  | phenol                                                                        | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 96  | 3-phenoxybenzyl 3-(2,2-dichlorovinyl)-<br>2,2-dimethylcyclopropanecarboxylate | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 97  | 1,3-butadiene                                                                 | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 98  | bis (2-ethylhexyl) phthalate                                                  | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 99  | hydrogen fluoride and its water-soluble salts                                 | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 100 | bromotrifluoromethane                                                         | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 101 | 1-bromopropane                                                                | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 102 | 2-bromopropane                                                                | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 6.0   | 6.0   |
| 103 | bromomethane                                                                  | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 104 | hexadecyltrimethylammonium chloride                                           | <0.1 | 0.0   | 0.0      | 0.0                | <0.1  | 0.0    | 0.0   | 0.0   |
| 105 | n-hexane                                                                      | 10.5 | <0.1  | 0.0      | 0.0                | 10.5  | 0.0    | 46.8  | 46.8  |
| 106 | water-soluble salts of peroxodisulfuric acid                                  | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 107 | benzyl chloride                                                               | <0.1 | 0.0   | 0.0      | 0.0                | <0.1  | 0.0    | 0.0   | 0.0   |
| 108 | benzaldehyde                                                                  | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 1.9   | 1.9   |
| 109 | benzene                                                                       | 0.2  | 0.2   | 0.0      | 0.0                | 0.4   | 0.0    | 0.0   | 0.0   |
| 110 | boron compounds                                                               | <0.1 | 0.1   | 0.0      | 0.0                | 0.1   | 0.0    | 0.0   | 0.0   |
| 111 | polychlorinated biphenyls                                                     | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 112 | poly(oxyethylene)alkyl ether(alkyl C=12-15)                                   | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 113 | formaldehyde                                                                  | 0.3  | <0.1  | 0.0      | 0.0                | 0.3   | 2.9    | 0.0   | 2.9   |
| 114 | manganese and its compounds                                                   | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 115 | phthalic anhydride                                                            | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 116 | Methacrylic acid                                                              | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 117 | methyl methacrylate                                                           | 8.9  | 0.0   | 0.0      | 0.0                | 8.9   | 0.0    | 56.7  | 56.7  |
| 118 | (Z)-2'-methylacetophenone<br>4,6-dimethyl-2-pyrimidinylhydrazone              | 0.0  | 2.2   | 0.0      | 0.0                | 2.2   | 0.0    | 0.0   | 0.0   |
| 119 | α-methylstyrene                                                               | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |
| 120 | methylnaphthalene                                                             | 1.5  | 0.0   | 0.0      | 0.0                | 1.5   | 0.0    | 0.0   | 0.0   |
| 121 | N-Methyl-2-pyrrolidone                                                        | 7.0  | 0.2   | 0.0      | 0.0                | 7.2   | 0.0    | 217.9 | 217.9 |
| 122 | molybdenum and its compounds                                                  | 0.0  | <0.1  | 0.0      | 0.0                | <0.1  | 0.0    | 0.1   | 0.1   |
| 123 | Dimethyl sulfate                                                              | 0.5  | 0.0   | 0.0      | 0.0                | 0.5   | 0.0    | 0.0   | 0.0   |
| 124 | triphenyl phosphate                                                           | 0.0  | 0.0   | 0.0      | 0.0                | 0.0   | 0.0    | 0.0   | 0.0   |

(Tons, Dioxins: mg-TEQ)

| No  | Name of Chemical Compound                                                                                                                                                                                                                                                                                                                                                                             |     | Amo   | ount Rele | .0 0.0   |       | Amo    | erred |       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----------|----------|-------|--------|-------|-------|
| NO. | Name of Chemical Compound                                                                                                                                                                                                                                                                                                                                                                             | Air | Water | Soil      | Landfill | Total | Sewage | Waste | Total |
| 125 | (S)-alpha-cyano-3-phenoxybenzyl<br>(S)-2-(4-chlorophenyl)-3-methylbutyrate                                                                                                                                                                                                                                                                                                                            | 0.0 | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0   | 0.0   |
| 126 | 2-Ethylhexyl acrylate                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0   | 0.0   |
| 127 | Mixture of polyaddition products of oxirane to alkan-1-amine (limited to those the alkane is linear chain and C=8,10,12,14,16 or 18 and the mixture thereof), polyaddition products of oxirane to (Z)-octadec-9-en-1-amine and polyaddition products of oxirane to (9Z,12Z)-octadeca-9,12-dien-1-amine                                                                                                | 0.0 | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0   | 0.0   |
| 128 | alpha-Alkyl-omega-hydroxypoly(oxyethane-1,2-diyl) (limited to those the alkyl group is C=16-18 and the mixture thereof, and the number average molecular weight is less than 1,000), alpha-alkenyl-omega-hydroxypoly(oxyethane-1,2-diyl) (limited to those the alkenyl group is C=16-18 and the mixture thereof, and the number average molecular weight is less than 1,000), and the mixture thereof | 0.0 | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0   | 0.0   |
| 129 | alpha-Alkyl-omega-hydroxypoly[oxyethane-1,2-diyl/oxy(methylethane-1,2-diyl)] (limited to mixture of those the alkyl group is branched chain and C=9-11 (limited to those the alkyl group is consists of C=10 as a major component))                                                                                                                                                                   | 0.0 | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0   | 0.0   |
| 130 | 5-Ethyl-5,8-dihydro-8-oxo-[1,3]<br>dioxolo[4,5-g]quinoline-7-carboxylic acid<br>(synonym: Oxolinic acid)                                                                                                                                                                                                                                                                                              | 0.0 | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0   | 0.0   |
| 131 | Ethylenediaminetetraacetic acid and its potassium and sodium salts                                                                                                                                                                                                                                                                                                                                    | 0.0 | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0   | 0.0   |
| 132 | Octamethylcyclotetrasiloxane                                                                                                                                                                                                                                                                                                                                                                          | 0.0 | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0   | 0.0   |
| 133 | 1-(2-Chloroimidazo[1,2-a]pyridin-3-<br>ylsulfonyl)-3-(4,6-dimethoxypyrimidin-2-yl)<br>urea (synonym: Imazosulfuron)                                                                                                                                                                                                                                                                                   | 0.0 | 0.0   | 0.0       | 0.0      | 0.0   | 0.0    | 0.0   | 0.0   |
| 134 | (RS)-5-Chloro-N-(1,3-dihydro-1,1,3-<br>trimethylisobenzofuran-4-yl)-1,3-dimethyl-<br>1H-pyrazole-4-carboxamide (synonym:<br>Furametpyr)                                                                                                                                                                                                                                                               | 0.0 | 0.4   | 0.0       | 0.0      | 0.4   | 0.0    | 0.0   | 0.0   |

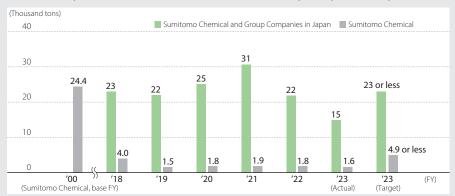
(Tons, Dioxins: mg-TEQ)

| NI-  | Name of Chamical Communication                                                                                                                                                                                                                                   |       | Amo   | ount Rele | eased    |       | Amount Transferred |       | erred |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------|----------|-------|--------------------|-------|-------|
| INO. | Name of Chemical Compound                                                                                                                                                                                                                                        | Air   | Water | Soil      | Landfill | Total | Sewage             | Waste | Total |
| 135  | (E)-1-(2-Chloro-1,3-thiazol-5-ylmethyl)-<br>3-methyl-2-nitroguanidine (synonym:<br>Clothianidin)                                                                                                                                                                 | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |
| 136  | 1,2-Dichloroethylene                                                                                                                                                                                                                                             | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |
| 137  | O-(2,6-Dichloro-p-tolyl) O,O-dimethyl phos-<br>phorothioate (synonym: Tolclofos-methyl)                                                                                                                                                                          | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |
| 138  | N-(3,5-Dichlorophenyl)-1,2-<br>dimethylcyclopropane-1,2-dicarboximide<br>(synonym: Procymidone)                                                                                                                                                                  | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 1.2   | 1.2   |
| 139  | 1,2-Dimethoxyethane                                                                                                                                                                                                                                              | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 2.0   | 2.0   |
| 140  | O-4-Cyanophenyl O,O-dimethyl thiophos-<br>phate (synonym: Cyanophos or CYAP)                                                                                                                                                                                     | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |
| 141  | Trimethylbenzene                                                                                                                                                                                                                                                 | 0.3   | 0.0   | 0.0       | 0.0      | 0.3   | 0.0                | 0.0   | 0.0   |
| 142  | Lead and its compounds                                                                                                                                                                                                                                           | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |
| 143  | Paraformaldehyde                                                                                                                                                                                                                                                 | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |
| 144  | N,N-Bis(2-hydroxyethyl)alkanamide (limited to those the alkane is linear chain and C=8, 10, 12, 14, 16 or 18 and mixture thereof), (Z)-N,N-bis(2-hydroxyethyl)octadec-9-enamide and (9Z,12Z)-N,N-bis(2-hydroxyethyl) octadeca-9,12-dienamide and mixture thereof | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |
| 145  | (1-Hydroxyethane-1,1-diyl)diphosphonic acid and its potassium salt and sodium salt                                                                                                                                                                               | 0.0   | 2.2   | 0.0       | 0.0      | 2.2   | 0.0                | 0.0   | 0.0   |
| 146  | 1-Hexene                                                                                                                                                                                                                                                         | 127.5 | 0.0   | 0.0       | 0.0      | 127.5 | 0.0                | 0.0   | 0.0   |
| 147  | Heptane                                                                                                                                                                                                                                                          | 51.9  | <0.1  | 0.0       | 0.0      | 51.9  | 0.0                | 67.9  | 67.9  |
| 148  | Acetic anhydride                                                                                                                                                                                                                                                 | 1.0   | 0.0   | 0.0       | 0.0      | 1.0   | 0.0                | 42.3  | 42.3  |
| 149  | Methyl isobutyl ketone                                                                                                                                                                                                                                           | 142.0 | 0.1   | 0.0       | 0.0      | 142.1 | 0.1                | 150.5 | 150.6 |
| 150  | 2-(2-Methoxyethoxy)ethanol                                                                                                                                                                                                                                       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0                | 0.0   | 0.0   |
| Tota | ıl                                                                                                                                                                                                                                                               | 533   | 12    | 0.0       | 0.0      | 545   | 3.8                | 4,140 | 4,144 |


#### **Waste Reduction**

#### ■ PCB Waste (Sumitomo Chemical and Group Companies in Japan)

Storage and Control of High Concentrations of PCB Waste as of the End of Fiscal 2023


|                                                | Numbe | Volume of PCBs |       |      |
|------------------------------------------------|-------|----------------|-------|------|
|                                                | Total | Storage        | Usage | (kl) |
| Sumitomo Chemical                              | 0     | 0              | 0     | 0    |
| Sumitomo Chemical and Group Companies in Japan | 0     | 0              | 0     | 0    |

Note: The volume of PCBs does not include minute amounts of PCB waste in the PCB net conversion amount. High concentrations of PCBs in such classes of materials as fluorescent lamps, mercury lamp ballast, and contaminated substances (wastepaper, etc.) fall outside the scope of collation.

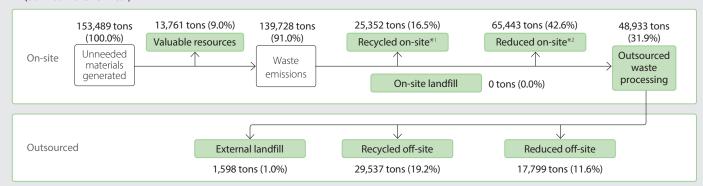


In accordance with the Act on Special Measures against PCB Waste, Sumitomo Chemical properly collects high-concentration polychlorinated biphenyl (PCB)-containing waste.\* The Company then stores this industrial waste, which is subject to special controls, in specified areas within the Company's waste storage facilities, subsequently ensuring strict control of this waste. Sumitomo Chemical completed treatment of all of its PCB-containing waste ahead of the legally prescribed deadline.

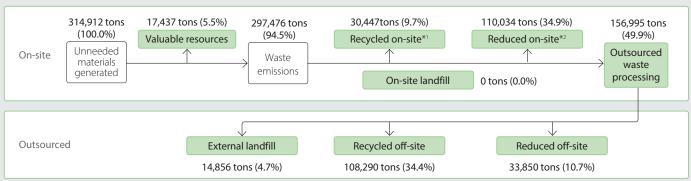
#### ■ Landfill Disposal Amount (Sumitomo Chemical and Group Companies in Japan)






#### Digitization of Manifests to Be Prepared Pursuant to the Waste Management and Public Cleansing Act (Sumitomo Chemical)

|        | Number of manifests issued | Number of manifests digitized | Digitization rate (%) |
|--------|----------------------------|-------------------------------|-----------------------|
| FY2016 | 19,868                     | 19,594                        | 99                    |
| FY2017 | 19,858                     | 19,585                        | 99                    |
| FY2018 | 20,598                     | 20,355                        | 99                    |
| FY2019 | 19,835                     | 19,726                        | 99                    |
| FY2020 | 20,735                     | 20,675                        | 99                    |
| FY2021 | 23,027                     | 22,961                        | 99                    |
| FY2022 | 22,196                     | 22,179                        | 99                    |
| FY2023 | 20,423                     | 20,409                        | 99                    |


Sumitomo Chemical has been fostering the digitization of manifests to improve operational efficiency and ensure compliance with the law and transparency of data.

<sup>\*</sup> Transformers, capacitors, and other electronic devices that contain PCB insulating oil.

# ■ Waste Disposal Flow Chart and FY2023 Results (Sumitomo Chemical)



#### (Sumitomo Chemical and Group Companies in Japan)



Note: The waste amount for Sumitomo Chemical and Group companies in Japan accounts for around 80% of the entire Group total, which includes overseas Group companies.

<sup>\*1</sup> Recycled waste: Total amount of waste that was reused, recycled, or thermally recycled

<sup>\*2</sup> Reduced waste: Total amount of waste reduced through incineration, etc.

# ■ FY2023 Results by Item in Connection with the Disposal of Waste (Sumitomo Chemical)

(Tons)

| T                         | Waste     | Recycled         | d on-site          | Reduced      | d on-site | Outsourced          | On-site  | Reduced  | Recycled         | l off-site         | External | Valuable  |
|---------------------------|-----------|------------------|--------------------|--------------|-----------|---------------------|----------|----------|------------------|--------------------|----------|-----------|
| Туре                      | emissions | Reused, recycled | Thermally recycled | Incineration | Other     | waste<br>processing | landfill | off-site | Reused, recycled | Thermally recycled | landfill | resources |
| Burnt residue             | 4,855.4   | 0.0              | 0.0                | 0.2          | 0.0       | 4,855.2             | 0.0      | 0.0      | 4,380.5          | 0.0                | 474.7    | 0.0       |
| Sludge                    | 40,427.9  | 0.1              | 7,045.1            | 15,839.6     | 1,826.1   | 15,717.0            | 0.0      | 4,431.7  | 10,515.4         | 439.9              | 329.8    | 0.0       |
| Oil waste                 | 33,539.3  | 2,863.5          | 8,933.2            | 10,499.2     | 0.0       | 11,243.4            | 0.0      | 5,350.9  | 4,869.8          | 870.0              | 152.9    | 204.0     |
| Waste acid                | 6,807.0   | 0.0              | 1.9                | 4,506.8      | 783.0     | 1,515.2             | 0.0      | 1,337.3  | 108.4            | 37.4               | 32.1     | 537.9     |
| Waste alkali              | 46,041.3  | 6,104.8          | 19.6               | 30,548.1     | 0.0       | 9,368.7             | 0.0      | 5,750.1  | 2,773.6          | 690.8              | 154.1    | 63.0      |
| Waste plastic             | 4,420.6   | 0.0              | 329.8              | 529.0        | 0.0       | 3,561.7             | 0.0      | 477.0    | 2,560.2          | 210.7              | 314.3    | 6,030.4   |
| Waste paper               | 997.4     | 0.0              | 53.7               | 810.0        | 0.0       | 133.7               | 0.0      | 0.8      | 132.9            | 0.0                | 0.0      | 178.8     |
| Wood waste                | 820.2     | 0.0              | 0.0                | 100.7        | 0.0       | 719.4               | 0.0      | 37.0     | 397.0            | 284.1              | 1.4      | 5.6       |
| Textile waste             | 5.3       | 0.0              | 0.0                | 0.0          | 0.0       | 5.3                 | 0.0      | 4.5      | 0.8              | 0.0                | 0.0      | 0.0       |
| Animal and plant residues | 8.3       | 0.0              | 0.0                | 0.0          | 0.0       | 8.3                 | 0.0      | 8.3      | 0.0              | 0.0                | 0.0      | 0.0       |
| Metal waste               | 1,023.7   | 0.0              | 0.0                | 0.2          | 0.0       | 1,023.4             | 0.0      | 111.7    | 902.3            | 0.0                | 9.4      | 3,318.5   |
| Glass and pottery waste   | 440.2     | 0.0              | 0.0                | 0.0          | 0.0       | 440.2               | 0.0      | 53.3     | 309.8            | 53.3               | 23.8     | 0.0       |
| Slag                      | 0.0       | 0.0              | 0.0                | 0.0          | 0.0       | 0.0                 | 0.0      | 0.0      | 0.0              | 0.0                | 0.0      | 0.0       |
| Debris                    | 317.1     | 0.0              | 0.0                | 0.0          | 0.0       | 317.1               | 0.0      | 236.1    | 0.0              | 0.0                | 81.0     | 0.0       |
| Soot and dust             | 24.4      | 0.0              | 0.0                | 0.0          | 0.0       | 24.4                | 0.0      | 0.0      | 0.0              | 0.0                | 24.4     | 3,422.9   |
| Total                     | 139,728   | 8,968            | 16,384             | 62,834       | 2,609     | 48,933              | 0        | 17,799   | 26,951           | 2,586              | 1,598    | 13,761    |

#### (Sumitomo Chemical and Group Companies in Japan)

(Tons)

| T                         | Waste     | Recycled         | d on-site          | Reduced      | d on-site | Outsourced          | On-site  | Reduced  | Recycled         | l off-site         | External | Valuable  |
|---------------------------|-----------|------------------|--------------------|--------------|-----------|---------------------|----------|----------|------------------|--------------------|----------|-----------|
| Type                      | emissions | Reused, recycled | Thermally recycled | Incineration | Other     | waste<br>processing | landfill | off-site | Reused, recycled | Thermally recycled | landfill | resources |
| Burnt residue             | 8,238.1   | 0.0              | 0.0                | 0.2          | 0.0       | 8,238.0             | 0.0      | 2.2      | 6,535.8          | 1.0                | 1,699.0  | 0         |
| Sludge                    | 81,384.6  | 0.1              | 7,045.1            | 15,839.6     | 35,630.4  | 22,869.4            | 0.0      | 8,369.1  | 11,733.1         | 770.4              | 1,996.6  | 83        |
| Oil waste                 | 41,556.2  | 2,884.5          | 14,007.2           | 10,499.2     | 0.0       | 14,165.4            | 0.0      | 6,623.0  | 5,419.7          | 1,960.9            | 162.1    | 818       |
| Waste acid                | 8,589.8   | 0.0              | 1.9                | 4,506.8      | 783.0     | 3,298.1             | 0.0      | 2,056.8  | 329.9            | 867.7              | 43.8     | 538       |
| Waste alkali              | 68,398.8  | 6,104.8          | 19.6               | 41,334.8     | 0.0       | 20,939.5            | 0.0      | 15,028.8 | 3,776.4          | 1,852.2            | 282.0    | 63        |
| Waste plastic             | 8,279.8   | 0.0              | 329.8              | 529.0        | 0.0       | 7,421.0             | 0.0      | 1,096.7  | 4,809.9          | 587.0              | 927.9    | 7,893     |
| Waste paper               | 1,878.0   | 0.0              | 53.7               | 810.0        | 0.0       | 1,014.3             | 0.0      | 128.7    | 873.3            | 1.7                | 10.6     | 711       |
| Wood waste                | 1,090.2   | 0.0              | 0.0                | 100.7        | 0.0       | 989.5               | 0.0      | 66.2     | 596.8            | 322.0              | 4.5      | 6         |
| Textile waste             | 5.3       | 0.0              | 0.0                | 0.0          | 0.0       | 5.3                 | 0.0      | 4.5      | 0.8              | 0.0                | 0.0      | 0         |
| Animal and plant residues | 11.6      | 0.0              | 0.0                | 0.0          | 0.0       | 11.6                | 0.0      | 8.3      | 0.0              | 3.4                | 0.0      | 0         |
| Metal waste               | 1,147.8   | 0.0              | 0.0                | 0.2          | 0.4       | 1,147.2             | 0.0      | 161.5    | 967.3            | 0.6                | 17.8     | 3,870     |
| Glass and pottery waste   | 502.0     | 0.0              | 0.0                | 0.0          | 0.0       | 502.0               | 0.0      | 68.0     | 324.9            | 56.1               | 53.0     | 1         |
| Slag                      | 25.2      | 0.0              | 0.0                | 0.0          | 0.0       | 25.2                | 0.0      | 0.0      | 0.0              | 0.0                | 25.2     | 0         |
| Debris                    | 580.8     | 0.0              | 0.0                | 0.0          | 0.0       | 580.8               | 0.0      | 236.1    | 0.9              | 0.0                | 343.8    | 0         |
| Soot and dust             | 75,787.4  | 0.0              | 0.0                | 0.0          | 0.0       | 75,787.4            | 0.0      | 0.0      | 66,498.0         | 0.0                | 9,289.4  | 3,454     |
| Total                     | 297,476   | 8,989            | 21,457             | 73,620       | 36,414    | 156,995             | 0        | 33,850   | 101,867          | 6,423              | 14,856   | 17,437    |

# ■ FY2023 Categories of Hazardous\* and Non-Hazardous Waste (Sumitomo Chemical)

(Tons)

| Туре                | Waste     | Recycle          | d on-site          | Reduced      | d on-site | Outsourced<br>waste | On-site  | Reduced  | Recycle          | d off-site         | External |
|---------------------|-----------|------------------|--------------------|--------------|-----------|---------------------|----------|----------|------------------|--------------------|----------|
|                     | emissions | Reused, recycled | Thermally recycled | Incineration | Other     | processing          | landfill | off-site | Reused, recycled | Thermally recycled | landfill |
| Non-Hazardous Waste | 53,340    | 0                | 7,429              | 17,280       | 1,826     | 26,806              | 0        | 5,361    | 19,199           | 988                | 1,259    |
| Hazardous Waste     | 86,388    | 8,968            | 8,955              | 45,554       | 783       | 22,127              | 0        | 12,438   | 7,752            | 1,598              | 339      |

#### (Sumitomo Chemical and Group Companies in Japan)

(Tons)

| Type                | Waste     | Recycle          | d on-site          | Reduced on-site Outsourced |        | waste      |          | On-site Reduced |                  | Recycled off-site  |          |
|---------------------|-----------|------------------|--------------------|----------------------------|--------|------------|----------|-----------------|------------------|--------------------|----------|
| туре                | emissions | Reused, recycled | Thermally recycled | Incineration               | Other  | processing | landfill | off-site        | Reused, recycled | Thermally recycled | landfill |
| Non-Hazardous Waste | 178,931   | 0                | 7,429              | 17,280                     | 35,631 | 118,592    | 0        | 10,141          | 92,341           | 1,742              | 14,368   |
| Hazardous Waste     | 118,545   | 8,989            | 14,029             | 56,341                     | 783    | 38,403     | 0        | 23,709          | 9,526            | 4,681              | 488      |

<sup>\*</sup> Waste oil (including waste organic solvents), alkaline waste, acidic waste

#### Initiatives to Recycle and Reuse Plastic and Other Waste

Sumitomo Chemical is proactively working to recycle and reuse plastic and other waste.

# ■ Results of Recycling and Reusing Waste\* (Sumitomo Chemical)

(Tons)

|                                               | 2018    | 2019    | 2020    | 2021    | 2022    | 2023    |
|-----------------------------------------------|---------|---------|---------|---------|---------|---------|
| Waste emissions                               | 171,683 | 165,011 | 164,492 | 189,499 | 174,602 | 139,728 |
| Amount internally reused                      | 40,772  | 7,450   | 6,383   | 16,602  | 16,906  | 8,968   |
| Amount of internally recovered heat           | 16,480  | 24,179  | 23,382  | 28,798  | 22,324  | 16,384  |
| Outsourced waste processing                   | 51,827  | 49,597  | 53,515  | 65,471  | 55,356  | 48,933  |
| Amount externally reused                      | 30,209  | 30,094  | 31,334  | 38,584  | 32,010  | 26,951  |
| Amount of externally recovered heat           | 2,610   | 3,212   | 3,617   | 3,223   | 4,436   | 2,586   |
| Non-consolidated recycling and reuse rate (%) | 52.5    | 39.4    | 39.3    | 46.0    | 43.3    | 39.3    |

#### (Sumitomo Chemical and Group Companies in Japan)

(Tons)

|                                                    | 2018    | 2019    | 2020    | 2021    | 2022    | 2023    |
|----------------------------------------------------|---------|---------|---------|---------|---------|---------|
| Waste emissions                                    | 368,837 | 364,614 | 377,062 | 446,397 | 405,298 | 297,476 |
| Amount internally reused                           |         | 36,485  | 33,711  | 49,003  | 16,922  | 8,989   |
| Amount of internally recovered heat                | 0       | 0       | 0       | 0       | 27,032  | 21,457  |
| Outsourced waste processing                        |         | 231,563 | 247,908 | 276,071 | 232,013 | 156,995 |
| Amount externally reused                           | 194,098 | 189,338 | 195,737 | 213,309 | 173,416 | 101,867 |
| Amount of externally recovered heat                | 0       | 0       | 0       | 0       | 9,903   | 6,423   |
| Consolidated recycling and reuse rate in Japan (%) | 59.4    | 61.9    | 60.9    | 58.8    | 56.1    | 46.6    |

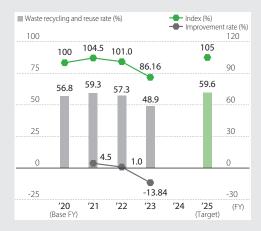
<sup>\*1</sup> Amount of waste recycled and reused: Amount internally and externally reused + Amount of internally and externally recovered heat Waste recycling and reuse rate: (Amount internally and externally reused + Amount of internally and externally recovered heat) / Waste emissions

# ■ Results of Recycling and Reusing Plastic Waste\*2 (Sumitomo Chemical)

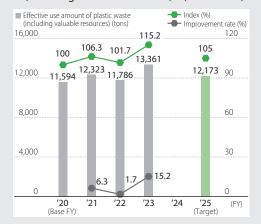
(Tons)

|                                               | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  |
|-----------------------------------------------|-------|-------|-------|-------|-------|-------|
| Waste emissions                               | 5,495 | 4,881 | 5,295 | 5,933 | 5,407 | 4,421 |
| Amount internally reused                      | 0     | 0     | 0     | 0     | 0     | 0     |
| Amount of internally recovered heat           | 160   | 150   | 273   | 437   | 321   | 330   |
| Outsourced waste processing                   | 4,235 | 3,983 | 4,184 | 4,788 | 4,449 | 3,562 |
| Amount externally reused                      | 3,130 | 2,918 | 2,923 | 3,473 | 3,317 | 2,560 |
| Amount of externally recovered heat           | 99    | 82    | 47    | 110   | 270   | 211   |
| Non-consolidated recycling and reuse rate (%) | 61.7  | 64.5  | 61.2  | 67.8  | 72.3  | 70.1  |

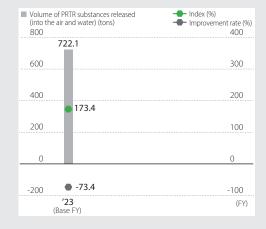
#### (Sumitomo Chemical and Group Companies in Japan)


(Tons)

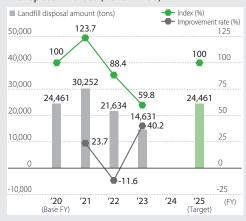
|                                                    | 2020  | 2021  | 2022  | 2023  |
|----------------------------------------------------|-------|-------|-------|-------|
| Waste emissions                                    | 8,386 | 9,856 | 9,415 | 8,280 |
| Amount internally reused                           | 37    | 35    | 0     | 0     |
| Amount of internally recovered heat                | 273   | 437   | 321   | 330   |
| Outsourced waste processing                        | 7,203 | 8,644 | 8,458 | 7,421 |
| Amount externally reused                           | 4,502 | 5,296 | 5,569 | 4,810 |
| Amount of externally recovered heat                | 464   | 622   | 688   | 587   |
| Consolidated recycling and reuse rate in Japan (%) | 62.9  | 64.8  | 69.9  | 69.2  |


<sup>\*2</sup> Amount of plastic recycled and reused: Amount internally and externally reused + Amount of internally and externally recovered heat Plastic recycling and reuse rate: (Amount internally and externally reused + Amount of internally and externally recovered heat) / Waste emissions

#### Common Environmental Protection and Management Targets (Japan)


#### ■ Waste recycling and reuse rate\* $^{1}$ (2020 = 100)




# ■ Effective Use Amount of Plastic Waste (including valuable resources)\*2 (2020 = 100)



# ■ Volume of PRTR Substances Released (into the Air and Water) and PRTR Substance Emissions Indices (2023 = 100)




# ■ Landfill Disposal Amount and Landfill Disposal Indices (2020 = 100)



#### Improve the waste recycling and reuse rate





<sup>\*1</sup> Waste recycling and reuse rate: (amount internally and externally reused + Amount of internally and externally recovered heat) /Waste emissions ×100

#### Improve the effective use amount of plastic waste





\*2 Effective use amount of plastic waste (including valuable resources) = (amount of valuable resources) + (amount of internally recycled and reused waste + amount of internally recovered waste heat) + (amount of externally recycled and reused waste + amount of externally recovered waste heat)

#### Reduction of volume of PRTR substances released



\*3 The new target will be set after fiscal 2023 to comply with the act's revision on April 1, 2023, which increased the number of subject substances from 354 to 462.

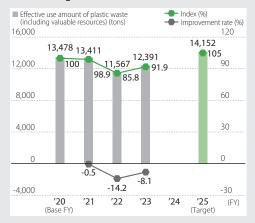
#### Reduction of landfill disposal amount



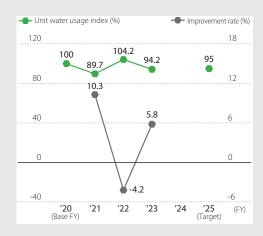
Results

The amount in fiscal 2023 decreased by 40.2% compared with fiscal 2020, achieving the target.

#### $Note: \textbf{Sumitomo Chemical} \ and \ the \ 17 \ Group \ companies \ in \ Japan \ listed \ below \ are \ included \ in \ the \ boundary \ of \ calculation.$


Sumika-Kakoushi Co., Ltd.; Sumika Color Co., Ltd.; Sumika Plastech Co., Ltd.; Nippon A&L Inc.; Asahi Chemical Co., Ltd.; Ceratec Co., Ltd.; SanTerra Co., Ltd.; Sumika Agro Manufacturing Co., Ltd.; Sumika Agrotech Co., Ltd.; Nippon A&L Inc.; Asahi Chemical Co., Ltd.; Senter Co., Ltd.; Sumika Agrotech Co., Ltd.; Sumika Agrotech Co., Ltd.; Nippon A&L Inc.; Asahi Chemical Co., Ltd.; Sumika Polycarbonate Ltd.; Sumika Agrotech Co., Ltd.; Nippon A&L Inc.; Asahi Chemical Co., Ltd.; Sumika Polycarbonate Ltd.; Nippon A&L Inc.; Asahi Chemical Co., Ltd.; Sumika Polycarbonate Ltd.; Sumika Polyc

#### Common Environmental Protection and Management Targets (Overseas)


#### ■ Waste recycling and reuse rate\* $^{*1}$ (2020 = 100)



#### ■ Effective Use Amount of Plastic waste (including valuable resources)\*2 (2020 = 100)



#### ■ Unit Water Usage Indices (2020 = 100)



#### Improve the waste recycling and reuse rate





Results

Worsened 12.2% relative to fiscal 2020 in fiscal 2023

#### Improve the effective use amount of plastic waste

Improve by 5% or more relative to fiscal **Target** 2020 by fiscal 2025.



Results

Worsened 8.1% relative to fiscal 2020 in fiscal 2023

\*2 Effective use amount of plastic waste (including valuable resources) = (amount of valuable resources) + (amount of internally recycled and reused waste + amount of internally recovered waste heat) + (amount of externally recycled and reused waste + amount of externally recovered waste heat)

#### Improvement in Unit Water Usage Indices

Improve unit water usage indices by at **Target** least 1% annually on average.



Results

Improved by 5.8% relative to fiscal 2020 in fiscal 2023, achieving the target.

#### Note: The following 29 Group companies overseas are included in the boundary of calculation:

Singapore

• The Polyolefin Company (Singapore) Pte.Ltd. • Sumitomo Chemical Asia Pte Ltd (MMA&S-SBR)

Thailand Vietnam

• Bara Chemical Co., Ltd. • Sumika Polymer Compounds (Thailand) Co., Ltd.

China

· Sumika Electronic Materials Vietnam Co., Ltd.

• Dalian Sumika Chemphy Chemical Co., Ltd. • Sumika Electronic Materials (Wuxi) Co., Ltd.

• Sumika Electronic Materials (Xi'an) Co., Ltd. • Zhuhai Sumika Polymer Compounds Co., Ltd.

- Sumika Electronic Materials (Hefei) Co., Ltd. Sumika Huabei Electronic Materials (Beijing) Co., Ltd.
- Dalian Sumika Jingang Chemicals Co., Ltd. Sumika Electronic Materials (Changzhou) Co., Ltd.
- Xuyou Electronic Materials (Wuxi) Co., Ltd. Sumika Electronic Materials (Chongging) Co., Ltd.

Taiwan

Sumika Technology Co., Ltd.
 Sumipex Techsheet Co., Ltd.

India

· Sumika Polymer Compounds India Co., Ltd.

South Korea

· Dongwoo Fine-Chem Co., Ltd. · SSLM Co., Ltd.

Australia United States

• Botanical Resources Australia Manufacturing Services Pty Ltd. • Botanical Resources Australia Agricultural Services Pty Ltd. • Sumitomo Chemical Advanced Technologies LLC • McLaughlin Gormley King Company • Valent BioSciences LLC

Sumika Polymer North America LLC

Turkey

United Kingdom • Sumika Polymer Compounds UK Co., Ltd. • Sumika Polymer Compounds Turkey Co., Ltd.

France

· Sumika Polymer Compounds France Co., Ltd.

<sup>\*1</sup> Waste recycling and reuse rate: (amount internally and externally reused + Amount of internally and externally recovered heat) /Waste emissions ×100

## **Environmental Management System**

Between 1997 and 2001, ISO 14001:1996 certification was obtained at all Works and continually maintained thereafter. Updated ISO 14001 certification was obtained later and all Works have been inspected on a continual basis to ensure the certification does not expire.

#### ■ Acquisition of ISO 14001 Certification

#### 1. Sumitomo Chemical (Acquisition Rate: 100%)

| Works                                             | Certificate Number | Certification Expiration Date |
|---------------------------------------------------|--------------------|-------------------------------|
| Ehime Works (including Ohe Works)                 | JCQA-E-0018        | April 12, 2025                |
| Chiba Works (including the SCIOCS Chiba Facility) | (KHK-)97ER · 004   | June 25, 2027                 |
| Osaka Works                                       | JQA-E-90072        | November 27, 2024             |
| Oita Works (Gifu Plant)                           | JCQA-E-0206        | December 24, 2024             |
| Oita Works (Okayama Plant)                        | JCQA-E-0218        | January 21, 2025              |
| Oita Works                                        | JQA-E-90152        | March 30, 2025                |
| Misawa Works                                      | JQA-EM0355         | December 12, 2025             |
| Ibaraki Works                                     | EC15J0024          | March 24, 2027                |

#### 2. Group Companies In Japan

| Companies                                                     | Certificate Number | Certification Expiration Date |
|---------------------------------------------------------------|--------------------|-------------------------------|
| Sumika-Kakoushi Co., Ltd.                                     | JCQA-E-0532        | January 12, 2025              |
| Nippon A&L Inc. (Ehime Works)                                 | ISO14001—0076790   | January 3, 2025               |
| Nippon A&L Inc. (Chiba Works)                                 | (KHK-)97ER • 004   | June 25, 2027                 |
| Asahi Chemical Co., Ltd.                                      | JUSE-EG-717        | February 26, 2027             |
| Ceratec Co., Ltd.                                             | JCQA-E-0018        | April 12, 2025                |
| Sumika Assembly Techno Co., Ltd.                              | JCQA-E-0018        | April 12, 2025                |
| Sumika Agro Manufacturing Co., Ltd. (Ehime Fertilizers Works) | JCQA-E-0018        | April 12, 2025                |
| Sumika Agro Manufacturing Co., Ltd. (Other Works)             | 13ER • 925         | August 5, 2027                |
| Koei Chemical Co., Ltd.                                       | JCQA-E-0969        | March 11, 2026                |
| Taoka Chemical Co., Ltd. (Ehime Works)                        | JCQA-E-0018        | April 12, 2025                |
| Taoka Chemical Co., Ltd. (Yodogawa Works)                     | JQA—EM3938         | November 27, 2024             |
| Tanaka Chemical Corporation                                   | 4526844            | July 25, 2026                 |
| Sumitomo Pharma Co., Ltd. (Suzuka Works)                      | 00ER-094           | December 21, 2024             |
| Sumitomo Pharma Co., Ltd. (Oita Works)                        | JQA-E-90152        | March 30, 2025                |
| Sumika Polycarbonate Limited                                  | JCQA-E-0436        | December 23, 2026             |
| SANRITZ Co., Ltd.                                             | JMAQA-E105         | April 26, 2027                |
| Sumika Kowa Tech Co., Ltd.                                    | EMS 601582         | December 26, 2025             |

#### 3. Overseas Group Companies

| Companies                                                | Certificate Number     | Certification Expiration Date |
|----------------------------------------------------------|------------------------|-------------------------------|
| Bara Chemical Co., Ltd.                                  | 24120907002            | August 29, 2027               |
| SSLM Co., Ltd.                                           | EAC-0617801            | May 7, 2027                   |
| Sumitomo Chemical India Private Limited (Tarapur plant)  | IND.23.5072/IM/U       | April 2, 2026                 |
| Sumitomo Chemical India Private Limited (Vapi plant)     | EMS 740097             | March 9, 2027                 |
| Sumitomo Chemical India Private Limited (Bhavnaga Plant) | 99 104 00704/02        | October 10, 2024              |
| Sumitomo Chemical India Private Limited (Gajod Plant)    | 99 104 00704/03        | October 10, 2024              |
| Sumitomo Chemical India Private Limited (Silvassa Plant) | 99 104 00704/04        | May 13, 2027                  |
| Sumitomo Chemical Advanced Technologies LLC              | 43631-2008-AE-USA-ANAB | June 2, 2026                  |
| Sumika Technology Co., Ltd.                              | EMS 89814              | December 26, 2024             |
| Dongwoo Fine-Chem Co., Ltd. (Pyeongtaek)                 | EAC-06003              | July 9, 2024                  |
| Dongwoo Fine-Chem Co., Ltd. (Iksan)                      | KR15/02363             | July 14, 2026                 |
| Dongwoo Fine-Chem Co., Ltd. (Samki)                      | KR20/81826429          | August 22, 2025               |
| Sumika Electronic Materials (Xi'an) Co., Ltd.            | CN15/10718             | September 8, 2024             |
| Sumika Huabei Electronic Materials (Beijing) Co., Ltd.   | 19919E00003ROM         | January 3, 2025               |
| Sumika Electronic Materials (Wuxi) Co., Ltd.             | 64188-2009-AE-RCG-RVA  | October 30, 2024              |
| Sumika Electronic Materials (Changzhou) Co., Ltd.        | CN20/10228             | May 19, 2026                  |
| XUYOU Electronic Materials (Wuxi) Co., Ltd.              | 00220E34370R0M         | December 24, 2026             |
| Sumika Electronic Materials (Chongqing) Co., Ltd.        | CN15/21719             | December 6, 2024              |
| Sumika Polymer Compounds (Thailand) Co., Ltd.            | 66 104 130035          | September 9, 2025             |
| Sumitomo Chemical Asia Pte Ltd (MMA plant)               | 10369744               | June 30, 2027                 |
| Sumitomo Chemical Asia Pte Ltd (S-SBR plant)             | SCS 102718EI           | September 8, 2024             |
| The Polyolefin Company (Singapore) Pte. Ltd.             | SG05/00847             | May 14, 2026                  |
| Zhuhai Sumika Polymer Compounds Co., Ltd.                | CN13/30779             | August 19, 2025               |
| Sumika Polymer Compounds Dalian Co., Ltd.                | CN14/10103             | March 25, 2026                |

Note: Surveys are conducted once per year, and the above list is based on the survey results as of March 31, 2024

## **Energy Management System**

#### ■ Acquisition of ISO 50001 Certification

| Works                                    | Certificate Number | Certification Expiration Date |
|------------------------------------------|--------------------|-------------------------------|
| Dongwoo Fine-Chem Co., Ltd. (Pyeongtaek) | EN-0632901         | October 13, 2025              |